دوره 9، شماره 3 - ( 9-1402 )                   جلد 9 شماره 3 صفحات 250-234 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Azadian E, Majlesi M, Fatahi A, Bakhtiyarian R. Evaluation of Spatio-Temporal Gait Variability during Obstacle Crossing in Parkinson's Disease. J Sport Biomech 2023; 9 (3) :234-250
URL: http://biomechanics.iauh.ac.ir/article-1-328-fa.html
آزادیان الهه، مجلسی مهدی، فتاحی علی، بختیاریان رضوان. ارزیابی تغییرپذیری متغیرهای فضایی-زمانی گام برداری بیماران مبتلا به پارکینسون در هنگام عبور از مانع. مجله بیومکانیک ورزشی. 1402; 9 (3) :234-250

URL: http://biomechanics.iauh.ac.ir/article-1-328-fa.html


1- گروه تربیت‌بدنی و علوم ورزشی، واحد همدان، دانشگاه آزاد اسلامی، همدان، ایران.
2- گروه بیومکانیک ورزشی، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران.
چکیده:   (519 مشاهده)
هدف عبور از موانع و محیط‌های پیچیده یک تکلیف چالش‌برانگیز در زندگی روزمره است و به‌عنوان بیشترین علت سقوط در افراد مبتلا به پارکینسون (PD) شناخته شده است. هدف این پژوهش ارزیابی تغییرپذیری در متغیرهای فضایی-زمانی گام‌برداری بیماران مبتلا به پارکینسون در هنگام عبور از مانع می‌باشد.
روش‌ها این مطالعه از نوع توصیفی بود که 15 مرد با بیماری پارکینسون و 17 مرد همتا و سالم به روش در دسترس در این مطالعه شرکت داشتند. پارامترهای فضایی-زمانی گام‌برداری در وضعیت عادی و عبور از مانع با استفاده از یک سیستم تحلیل حرکتی با چهار دوربین (Vicon (Oxford Metrics, Oxford, UK ارزیابی شدند. نتایج با استفاده از آزمون آماری آنالیز واریانس سه طرفه، و با نرم افزار SPSS با سطح آماری 0/05>p  تحلیل گردید.
یافته‌ها نتایج نشان دادند کادنس و سرعت راه رفتن کمتر و زمان نوسان، زمان اتکا، زمان گام، زمان قدم، زمان اتکای تک پا و زمان اتکای دوپا بیشتر از ویژگی‌های گام‌برداری در گروه PD نسبت به گروه کنترل بود (0/05>p). اختلاف بین دو گروه در ضریب تغییرپذیری متغیرهای زمان اتکای دو پا، زمان اتکای یک پا، زمان قدم، طول قدم و درصد تماس پای مخالف با زمین معنی‌دار بود. عبور از مانع نیز موجب افزایش زمان قدم، زمان گام، طول قدم و طول گام نسبت به وضعیت راه رفتن معمولی و افزایش تغییرپذیری در زمان نوسان، زمان اتکای تک پا، زمان گام و زمان قدم گردیده بود.
نتیجه‌گیری عبور از مانع در افراد PD موجب کاهش سرعت راه رفتن و افزایش زمان اتکای دوپا گردید که از مهم‌ترین ویژگی‌های مرتبط با ریسک سقوط هستند. همچنین تغییرپذیری بیشتر حین گام‌برداری عادی و یا عبور از مانع همراه با کاهش عملکردهای شناختی در گروه PD نشانه افزایش ریسک سقوط در فعالیت‌های دارای چالش می‌باشد.
متن کامل [PDF 2121 kb]   (169 دریافت) |   |   متن کامل (HTML)  (157 مشاهده)  
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1402/11/13 | پذیرش: 1402/11/29 | انتشار: 1402/11/30

فهرست منابع
1. Morrison S, Moxey J, Reilly N, Russell DM, Thomas KM, Grunsfeld AA. The relation between falls risk and movement variability in Parkinson's disease. Experimental brain research. 2021;239(7):2077-87. [DOI:10.1007/s00221-021-06113-9] [PMID]
2. Siragy T, Nantel J. Quantifying dynamic balance in young, elderly and Parkinson's individuals: a systematic review. Frontiers in aging neuroscience. 2018;10:387. [DOI:10.3389/fnagi.2018.00387] [PMID]
3. Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, et al. Parkinson disease (Primer). Nature Reviews: Disease Primers. 2017;3(1). [DOI:10.1038/nrdp.2017.13] [PMID]
4. Dennison AC, Noorigian JV, Robinson KM, Fisman DN, Cianci HJ, Moberg P, et al. Falling in Parkinson disease: identifying and prioritizing risk factors in recurrent fallers. American journal of physical medicine & rehabilitation. 2007;86(8):621-32. [DOI:10.1097/PHM.0b013e311611583] [PMID]
5. Perera T, Tan JL, Cole MH, Yohanandan SA, Silberstein P, Cook R, et al. Balance control systems in Parkinson's disease and the impact of pedunculopontine area stimulation. Brain. 2018;141(10):3009-22. [DOI:10.1093/brain/awy216] [PMID]
6. Fasano A, Canning CG, Hausdorff JM, Lord S, Rochester L. Falls in Parkinson's disease: a complex and evolving picture. Movement disorders. 2017;32(11):1524-36. [DOI:10.1002/mds.27195] [PMID]
7. Kerr GK, Worringham CJ, Cole MH, Lacherez PF, Wood JM, Silburn P. Predictors of future falls in Parkinson disease. Neurology. 2010;75(2):116-24. [DOI:10.1212/WNL.0b013e3181e7b688] [PMID]
8. Canning CG, Paul SS, Nieuwboer A. Prevention of falls in Parkinson's disease: a review of fall risk factors and the role of physical interventions. Neurodegenerative disease management. 2014;4(3):203-21. [DOI:10.2217/nmt.14.22] [PMID]
9. Hausdorff JM, Zitser J, Mirelman A, Giladi N. Interaction between cognition and gait in patients with Parkinson's disease. Cognitive impairment and dementia in Parkinson's disease: Oxford University Press London; 2010. 87-100. [DOI:10.1093/med/9780199564118.003.008] [PMID]
10. Hausdorff JM, Cudkowicz ME, Firtion R, Wei JY, Goldberger AL. Gait variability and basal ganglia disorders: stride‐to‐stride variations of gait cycle timing in Parkinson's disease and Huntington's disease. Movement disorders. 1998;13(3):428-37. [DOI:10.1002/mds.870130310] [PMID]
11. Ma L, Mi T-M, Jia Q, Han C, Chhetri JK, Chan P. Gait variability is sensitive to detect Parkinson's disease patients at high fall risk. International Journal of Neuroscience. 2022;132(9):888-93. [DOI:10.1080/00207454.2020.1849189] [PMID]
12. Nanhoe-Mahabier W, Snijders A, Delval A, Weerdesteyn V, Duysens J, Overeem S, et al. Walking patterns in Parkinson's disease with and without freezing of gait. Neuroscience. 2011;182:217-24. [DOI:10.1016/j.neuroscience.2011.02.061] [PMID]
13. Nanhoe-Mahabier W, Snijders A, Delval A, Weerdesteyn V, Duysens J, Overeem S, et al. Split-belt locomotion in Parkinson's disease with and without freezing of gait. Neuroscience. 2013;236:110-6. [DOI:10.1016/j.neuroscience.2013.01.038] [PMID]
14. Simieli L, Barbieri FA, Orcioli-Silva D, Lirani-Silva E, Beretta VS, Santos PCRd, et al. Variability of crossing phase in older people with Parkinson's disease is dependent of obstacle height. Scientific Reports. 2018;8(1):14852. [DOI:10.1038/s41598-018-33312-2] [PMID]
15. Gérin-Lajoie M, Richards CL, McFadyen BJ. The circumvention of obstacles during walking in different environmental contexts: a comparison between older and younger adults. Gait & posture. 2006;24(3):364-9. [DOI:10.1016/j.gaitpost.2005.11.001] [PMID]
16. Patla AE, Greig M. Any way you look at it, successful obstacle negotiation needs visually guided on-line foot placement regulation during the approach phase. Neuroscience letters. 2006;397(1-2):110-4. [DOI:10.1016/j.neulet.2005.12.016] [PMID]
17. Lythgo N, Begg R, Best R. Stepping responses made by elderly and young female adults to approach and accommodate known surface height changes. Gait & posture. 2007;26(1):82-9. [DOI:10.1016/j.gaitpost.2006.07.006] [PMID]
18. Nantel J, de Solages C, Bronte-Stewart H. Repetitive stepping in place identifies and measures freezing episodes in subjects with Parkinson's disease. Gait & posture. 2011;34(3):329-33. [DOI:10.1016/j.gaitpost.2011.05.020] [PMID]
19. Bloem BR, Hausdorff JM, Visser JE, Giladi N. Falls and freezing of gait in Parkinson's disease: a review of two interconnected, episodic phenomena. Movement disorders: official journal of the Movement Disorder Society. 2004;19(8):871-84. [DOI:10.1002/mds.20115] [PMID]
20. Hausdorff J, Schaafsma J, Balash Y, Bartels A, Gurevich T, Giladi N. Impaired regulation of stride variability in Parkinson's disease subjects with freezing of gait. Experimental brain research. 2003;149:187-94. [DOI:10.1007/s00221-002-1354-8] [PMID]
21. Simieli L, Gobbi LTB, Orcioli-Silva D, Beretta VS, Santos PCR, Baptista AM, et al. The variability of the steps preceding obstacle avoidance (approach phase) is dependent on the height of the obstacle in people with Parkinson's disease. Plos one. 2017;12(9):e0184134. [DOI:10.1371/journal.pone.0184134] [PMID]
22. Pieruccini-Faria F, Montero-Odasso M. Obstacle negotiation, gait variability, and risk of falling: Results from the "gait and brain study". The Journals of Gerontology: Series A. 2019;74(9):1422-8. [DOI:10.1093/gerona/gly254] [PMID]
23. Terrier P, Schutz Y. Variability of gait patterns during unconstrained walking assessed by satellite positioning (GPS). European journal of applied physiology. 2003;90:554-61. [DOI:10.1007/s00421-003-0906-3] [PMID]
24. Ferrari A, Benedetti MG, Pavan E, Frigo C, Bettinelli D, Rabuffetti M, et al. Quantitative comparison of five current protocols in gait analysis. Gait & posture. 2008;28(2):207-16. [DOI:10.1016/j.gaitpost.2007.11.009] [PMID]
25. Winter DA. Biomechanics and motor control of human movement: John Wiley & Sons; 2009. [DOI:10.1002/9780470549148]
26. Whittle MW. Gait analysis: an introduction: Butterworth-Heinemann; 2014.
27. Springer S, Giladi N, Peretz C, Yogev G, Simon ES, Hausdorff JM. Dual-tasking effects on gait variability: The role of aging, falls, and executive function. Movement Disorders. 2006;21(7):950-7. [DOI:10.1002/mds.20848] [PMID]
28. Verghese J, Holtzer R, Lipton RB, Wang C. Quantitative gait markers and incident fall risk in older adults. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences. 2009;64(8):896-901. [DOI:10.1093/gerona/glp033] [PMID]
29. Richards J, Levine D, Whittle MW, editors. Whittle's Gait Analysis-E-Book. Elsevier Health Sciences; 2022 Aug 28.
30. Shapiro DC, Zernicke RF, Gregor RJ, Diestel JD. Evidence for generalized motor programs using gait pattern analysis. Journal of motor behavior. 1981;13(1):33-47. [DOI:10.1080/00222895.1981.10735235] [PMID]
31. Hausdorff JM. Gait dynamics, fractals and falls: finding meaning in the stride-to-stride fluctuations of human walking. Human movement science. 2007;26(4):555-89. [DOI:10.1016/j.humov.2007.05.003] [PMID]
32. Bryant MS, Rintala DH, Hou J-G, Collins RL, Protas EJ. Gait variability in P arkinson's disease: levodopa and walking direction. Acta Neurologica Scandinavica. 2016;134(1):83-6. [DOI:10.1111/ane.12505] [PMID]
33. Puyjarinet F, Bégel V, Gény C, Driss V, Cuartero M-C, Kotz SA, et al. Heightened orofacial, manual, and gait variability in Parkinson's disease results from a general rhythmic impairment. npj Parkinson's Disease. 2019;5(1):19. [DOI:10.1038/s41531-019-0092-6] [PMID]
34. Lipsitz LA. Dynamics of stability: the physiologic basis of functional health and frailty. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2002;57(3):B115-B25. [DOI:10.1093/gerona/57.3.B115] [PMID]
35. Vitório R, Pieruccini-Faria F, Stella F, Gobbi S, Gobbi LTB. Effects of obstacle height on obstacle crossing in mild Parkinson's disease. Gait & posture. 2010;31(1):143-6. [DOI:10.1016/j.gaitpost.2009.09.011] [PMID]
36. Dirnberger G, Jahanshahi M. Executive dysfunction in P arkinson's disease: A review. Journal of neuropsychology. 2013;7(2):193-224. [DOI:10.1111/jnp.12028] [PMID]
37. Lo O-Y, van Donkelaar P, Chou L-S. Distracting visuospatial attention while approaching an obstacle reduces the toe-obstacle clearance. Experimental brain research. 2015;233:1137-44. [DOI:10.1007/s00221-014-4189-1] [PMID]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به فصلنامه بیومکانیک ورزشی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Sport Biomechanics

Designed & Developed by : Yektaweb