Volume 11, Issue 4 (3-2026)                   J Sport Biomech 2026, 11(4): 344-0 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Naeimvafa Z, Farahpour N, Moisan G. Spatio-Temporal Parameters and Range of Motion of Lower Limb Joints During Running in Individuals with Adolescent Idiopathic Scoliosis with Mild Thoracic and Lumbar Curvature. J Sport Biomech 2026; 11 (4) :344-0
URL: http://biomechanics.iauh.ac.ir/article-1-378-en.html
1- Sports Biomechanics Department, Bu-Ali Sina University, Hamedan, Iran.
2- Department of Human Kinetics, Université du Québec à Trois-Rivières, Québec, Canada.
Abstract:   (41 Views)
Objective Adolescent Idiopathic Scoliosis (AIS) disrupts postural balance and movement control. The biomechanics of running in this population are not well understood. This study investigated spatiotemporal parameters and lower limb joint kinematics during running in AIS patients compared to healthy controls.
Methods Fifteen female patients with AIS (right thoracic: 21.5±2.7°; and left lumbar: 23.1±1.6°), along with 15 healthy controls, participated in this study. Participants performed a running task at their self-selected speed while markers were attached at landmarks based on the Full-body lumbar spine model. An 8-camera Qualisys system and two Kistler force plates were used to capture the markers' spatial position and record the ground reaction forces, respectively. The data were digitized using Qualisys Track Manager (QTM), and the spatiotemporal and kinematic data were calculated using Visual3D software. MANOVA and Statistical Parametric Mapping tests were used to analyze between-group differences (p<0.05).
Results The AIS patients had lower height, body mass, and BMI (P < 0.05) than the control group. No significant differences were observed in spatiotemporal variables between the two groups. In the AIS patients, the abduction-adduction range of motion (ROM) on the right hip (p= 0.045) and the left knee (p= 0.058) were reduced, while inversion-eversion motion on the right ankle (p= 0.025) was greater in the AIS patients.
Conclusion In AIS patients with mild thoracic and lumbar curvatures, the abduction-adduction of the hip and knee, along with the inversion-eversion of the ankle, are altered. These changes may represent a neuromuscular adaptation aimed at optimizing balance during running. Rehabilitation that emphasizes strengthening the lower limb muscles is recommended for these patients.
     
Type of Study: Research | Subject: Special
Received: 2025/04/27 | Accepted: 2025/09/8 | Published: 2025/09/8

References
1. Cobb J. Outline for the study of scoliosis. Instructional course lecture. 1948.
2. Lonstein JE. Patient evaluation. Moe's Textbook of Scoliosis and other spinal deformities. 1995.
3. Negrini S, Donzelli S, Aulisa AG, Czaprowski D, Schreiber S, de Mauroy JC, et al. 2016 SOSORT guidelines: orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth. Scoliosis and spinal disorders. 2018;13:1-48. [DOI:10.1186/s13013-017-0145-8] [PMID]
4. Brooks H, Azen S, Gerberg E, Brooks R, Chan L. Scoliosis: a prospective epidemiological study. The Journal of Bone & Joint Surgery. 1975;57(7):968-972. [DOI:10.2106/00004623-197557070-00015]
5. Winter RB. Classification and terminology. Moes Textbook of Scoliosis and Other Deformities. 1987.
6. Luo M, Yang H, Wu D, You X, Huang S, Song Y. Tent5a modulates muscle fiber formation in adolescent idiopathic scoliosis via maintenance of myogenin expression. Cell Proliferation. 2022;55(3):e13183. [DOI:10.1111/cpr.13183] [PMID]
7. Mahaudens P, Banse X, Mousny M, Detrembleur C. Gait in adolescent idiopathic scoliosis: kinematics and electromyographic analysis. European spine journal. 2009;18:512-521. [DOI:10.1007/s00586-009-1002-0] [PMID]
8. Park H-J, Sim T, Suh S-W, Yang JH, Koo H, Mun JH. Analysis of coordination between thoracic and pelvic kinematic movements during gait in adolescents with idiopathic scoliosis. European Spine Journal. 2016;25:385-393. [DOI:10.1007/s00586-015-3931-0] [PMID]
9. Yazdani S, Farahpour N, Delavar A, Farahmand F. Electromyographical Activity of Erector Spinae and Gluteus Medius Muscles in Patients with Adolescent Idiopathic Scoliosis during Gait. Medical Journal of Tabriz University of Medical Sciences. 2016;38(6):84-92.
10. Yazdani S, Farahpour N, Habibi M, Saba MS. Spatiotemporal variables of gait in patients with adolescent idiopathic scoliosis and healthy individuals. Journal of Sport Biomechanics. 2016;2(3):5-14.
11. Mallau S, Bollini G, Jouve J-L, Assaiante C. Locomotor skills and balance strategies in adolescents idiopathic scoliosis. Spine. 2007;32(1):E14-E22. [DOI:10.1097/01.brs.0000251069.58498.eb] [PMID]
12. Kim H-J, Chun H-J, Shen F, Kang K-T, Chang B-S, Lee C-K, et al. Analysis of pelvic compensation for dynamic sagittal imbalance using motion analysis. European spine journal. 2020;29:428-437. [DOI:10.1007/s00586-019-06267-9] [PMID]
13. Mahaudens P, Thonnard J-L, Detrembleur C. Influence of structural pelvic disorders during standing and walking in adolescents with idiopathic scoliosis. The Spine Journal. 2005;5(4):427-433. [DOI:10.1016/j.spinee.2004.11.014] [PMID]
14. Yang JH, Suh S-W, Sung PS, Park W-H. Asymmetrical gait in adolescents with idiopathic scoliosis. European Spine Journal. 2013;22:2407-2413. [DOI:10.1007/s00586-013-2845-y] [PMID]
15. Mahaudens P, Raison M, Banse X, Mousny M, Detrembleur C. Effect of long-term orthotic treatment on gait biomechanics in adolescent idiopathic scoliosis. The Spine Journal. 2014;14(8):1510-1519. [DOI:10.1016/j.spinee.2013.08.050] [PMID]
16. Chen P-Q, Wang J-L, Tsuang Y-H, Liao T-L, Huang P-I, Hang Y-S. The postural stability control and gait pattern of idiopathic scoliosis adolescents. Clinical biomechanics. 1998;13(1):S52-S58. [DOI:10.1016/S0268-0033(97)00075-2] [PMID]
17. Eun I-S, Cho YJ, Goh TS, Jeong JY, Lee JS. Association between gait profile and spinal alignment in patients with adolescent idiopathic scoliosis. Journal of Clinical Neuroscience. 2024;130:110915. [DOI:10.1016/j.jocn.2024.110915] [PMID]
18. Kearon C, Killian J. Fadors determining pulmonary fundion in adolescent idiopathic thoracic scoliosis. American Review of Respiratory Disease. 1993;148:288-294. [DOI:10.1164/ajrccm/148.2.288]
19. Weinstein SL, Dolan LA, Spratt KF, Peterson KK, Spoonamore MJ, Ponseti IV. Health and function of patients with untreated idiopathic scoliosis: a 50-year natural history study. Jama. 2003;289(5):559-567. [DOI:10.1001/jama.289.5.559] [PMID]
20. Burwell RG, Cole AA, Cook T, Grivas T, Kiel A, Moulton A, et al. Pathogenesis of idiopathic scoliosis. The Nottingham concept. scoliosis. 1992;8(19):68.
21. CJ G. Adolescent idiopathic scoliosis and cerebral asymmetry. Spine. 1995;20:1685-1691. [DOI:10.1097/00007632-199508000-00007] [PMID]
22. Karimi MT, Kavyani M, Kamali M. Balance and gait performance of scoliotic subjects: A review of the literature. Journal of back and musculoskeletal rehabilitation. 2016;29(3):403-415. [DOI:10.3233/BMR-150641] [PMID]
23. Kakar RS, Li Y, Brown CN, Oswald TS, Simpson KJ. Spine and lower extremity kinematics exhibited during running by adolescent idiopathic scoliosis patients with spinal fusion. Spine deformity. 2019;7(2):254-261. [DOI:10.1016/j.jspd.2018.08.015] [PMID]
24. Chopra S, Larson AN, Kaufman KR, Milbrandt TA. Accelerometer based assessment of daily physical activity and sedentary time in adolescents with idiopathic scoliosis. PLoS One. 2020;15(9):e0238181. [DOI:10.1371/journal.pone.0238181] [PMID]
25. Raabe ME, Chaudhari AM. An investigation of jogging biomechanics using the full-body lumbar spine model: Model development and validation. Journal of biomechanics. 2016;49(7):1238-1243. [DOI:10.1016/j.jbiomech.2016.02.046] [PMID]
26. Collins J, Whittle MW. Influence of gait parameters on the loading of the lower limb. Journal of biomedical engineering. 1989;11(5):409-412. [DOI:10.1016/0141-5425(89)90105-2] [PMID]
27. Gianuzzi DL, Barsotti CEG, Camara GdS, Andrade RM, Torini AP, Ribeiro AP. Effect of progression of adolescent idiopathic scoliosis on gait parameters. Coluna/Columna. 2023;22:e269978. [DOI:10.1590/s1808-185120222201269978]
28. Aminiaghdam S, Rode C, Müller R, Blickhan R. Increasing trunk flexion transforms human leg function into that of birds despite different leg morphology. Journal of Experimental Biology. 2017;220(3):478-486. [DOI:10.1242/jeb.148312] [PMID]
29. Kluger D, Major MJ, Fatone S, Gard SA. The effect of trunk flexion on lower-limb kinetics of able-bodied gait. Human movement science. 2014;33:395-403. [DOI:10.1016/j.humov.2013.12.006] [PMID]
30. Saha D, Gard S, Fatone S. The effect of trunk flexion on able-bodied gait. Gait & posture. 2008;27(4):653-660. [DOI:10.1016/j.gaitpost.2007.08.009] [PMID]
31. Wren TA, Rethlefsen S, Kay RM. Prevalence of specific gait abnormalities in children with cerebral palsy: influence of cerebral palsy subtype, age, and previous surgery. Journal of Pediatric Orthopaedics. 2005;25(1):79-83. [DOI:10.1097/01241398-200501000-00018] [PMID]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Sport Biomechanics

Designed & Developed by : Yektaweb