Volume 8, Issue 3 (12-2022)                   J Sport Biomech 2022, 8(3): 186-199 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Farmanbordar M, Daneshmandi H, Tabatabaei Nezhad S M. The effect of functional fatigue protocol on volleyball functional movement screening tool scores in Professional female volleyball players. J Sport Biomech 2022; 8 (3) :186-199
URL: http://biomechanics.iauh.ac.ir/article-1-295-en.html
1- Department of Sport Sciences, Faculty of Humanities, Shafagh Institute of Higher Education, Tonekabon, Iran
2- Department of Sport Injuries and Corrective Exercise, Faculty of physical Education and Sport Science, University of Guilan, Rasht, Iran.
3- Department of Physical Education and Sports Sciences, Raja University, Qazvin, Iran
Full-Text [PDF 2115 kb]   (435 Downloads)     |   Abstract (HTML)  (709 Views)
Full-Text:   (613 Views)
Extended Abstract
1.    Introduction

Most coaches and athletes have turned to pre-season screening in competitive and professional sports. This screening is done in order to prevent injuries and also to improve implementation strategies. The results of functional screening tests can be used to personalize training programs and potentially improve sports performance and reduce the risk of sports injuries. The functional screening test will be able to identify, evaluate and classify asymmetries and movement limitations. It seems that the asymmetry and limitation of the basic movement patterns can reduce the benefits of functional training and physical preparation. On the other hand, the factor of fatigue can be considered as one of the important factors in the occurrence and increase of the risk of injury, and that is why screening tools have been used to identify the risks of possible injuries in sports. Volleyball is a complex sport with high technical and tactical movements, where speed and power movements are often seen, and a lot of pressure is placed on the players during training and matches, which is likely to cause injuries during pre-season matches and exercises. The prevalence of injuries in volleyball players has been reported between 1.7 and 2.4 injuries per 1000 hours of play. Therefore, the aim of the present study was to investigate the effects of the functional fatigue protocol on the overall score of the volleyball-specific functional movements screening tool in professional female volleyball players.
2.    Methods
The current research reflects a semi-experimenta designl. The samples of the current research were 40 active volleyball players of the Premier League with at least 3 years of volleyball playing experience, with an age range of 16-20 years, who were selected through convenience sampling based on availability and who were placed in a group. The subjects had no history of hearing, vestibular, vision, fracture and surgery in the lower limbs (in the past year), neurological problems and concussions, and any musculoskeletal injuries, and they had no history of serious injuries. Individual information, sports medical records and consent form were collected through a questionnaire that was distributed among the subjects. Then, in a meeting, the subjects were familiarized with the tool and how to implement the fatigue protocol and the points that they had to consider during this research, in written and oral form. In order to prevent injuries, the subjects performed stretching and warming up for 10 minutes. Then a screening test was taken from the subject. All the subjects' movements were observed and scored by the researcher. Immediately after the test, the subjects performed the functional fatigue protocol defined by Sasco and Wilkins (2004). Immediately after performing the fatigue protocol, the functional screening test for volleyball was taken again. The RPE scale was used to determine the level of fatigue.
3.    Results
According to the previous literature in the field of injury prevention tools in different fields, the test used in this research, which was developed by Tabatabaei (2018), had acceptable validity and reliability reports based on statistical analyses, and therefore fitted well with the purpose of the study, which aimed at reducing the risk of possible injuries in the field of volleyball. Based on this, using the Wilcoxon test (non-normal distribution of data), the significance of the effect of volleyball-specific functional fatigue on the research variables was investigated. The results showed that carrying out the specific fatigue protocol in volleyball on Deep squat, Hexagon, Inline lunge, push up with trunk stability, Rotary stability, Squat jump, closed kinetic chain upper extremity, Triple jump for distance, Triple hop for distance, Lateral lunge, Sidearm medicine ball throw would have a significant effect on the functional screening test scores, and the performance of all these variables would be weakened (p ≤ 0.05).
4.    Conclusion
The findings of this study show that in order to identify changes in the movement patterns, it is necessary to screen of volleyball athletes in the state of fatigue. Identifying changes in the quality of movements in volleyball athletes in a fatigue state shows that screening should also be done in a fatigued state, so that it will be possible to identify movement patterns that may lead to injury.

Ethical Considerations
Compliance with ethical guidelines

There were no ethical considerations to be considered in this research.
Funding
This research did not receive any grant from funding agencies in the public, commercial, or non-profit sectors.
Authors' contributions
All authors equally contributed to preparing article.
Conflicts of interest
The authors declared no conflict of interest.
Type of Study: Research | Subject: Special
Received: 2022/10/30 | Accepted: 2022/12/15 | Published: 2022/12/21

References
1. Graham HK, Harvey A, Rodda J, Nattrass GR, Pirpiris M. The functional mobility scale (FMS). Journal of Pediatric Orthopaedics. 2004;24(5):514-520. https://doi.org/10.1097/01241398-200409000-00011 [DOI:10.1097/00004694-200409000-00011] [PMID]
2. Kraus K, Schütz E, Taylor WR, Doyscher R. Efficacy of the functional movement screen: a review. The Journal of Strength & Conditioning Research. 2014;28(12):3571-3584. [DOI:10.1519/JSC.0000000000000556] [PMID]
3. Tabatabaei SM, Daneshmandi H, Norasteh AA, Sharif Nia H. Development of Screening Test Battery for Volleyball Players: A Mixed Method Study. Physical Treatments-Specific Physical Therapy Journal. 2017;7(3):163-174. [DOI:10.32598/ptj.7.3.163]
4. Cook G, Burton L, Hoogenboom BJ, Voight M. Functional movement screening: the use of fundamental movements as an assessment of function‐part 2. International journal of sports physical therapy. 2014;9(4):549.
5. Shimoura K, Nakayama Y, Tashiro Y, Hotta T, Suzuki Y, Tasaka S, et al. Association between functional movement screen scores and injuries in male college basketball players. Journal of Sport Rehabilitation. 2019;29(5):621-625. [DOI:10.1123/jsr.2017-0351] [PMID]
6. Raza A, Tabassum Y, Hao W. Functional Movement Screening: A study on National Level Judo Players of Pakistan. sjesr. 2021;4(1):295-303. [DOI:10.36902/sjesr-vol4-iss1-2021(295-303)]
7. Chimera NJ, Smith CA, Warren M. Injury history, sex, and performance on the functional movement screen and Y balance test. Journal of athletic training. 2015;50(5):475-485. [DOI:10.4085/1062-6050-49.6.02] [PMID] [PMCID]
8. Dallinga JM, Benjaminse A, Lemmink KA. Which screening tools can predict injury to the lower extremities in team sports? Sports medicine. 2012;42(9):791-815. [DOI:10.1007/BF03262295] [PMID]
9. Stronska K, Golas A, Wilk M, Zajac A, Maszczyk A, Stastny P. The effect of targeted resistance training on bench press performance and the alternation of prime mover muscle activation patterns. Sports Biomechanics. 2020:1-15. [DOI:10.1080/14763141.2020.1752790] [PMID]
10. Psarakis M, Greene DA, Cole MH, Lord SR, Hoang P, Brodie M. Wearable technology reveals gait compensations, unstable walking patterns and fatigue in people with multiple sclerosis. Physiological measurement. 2018;39(7):075004. [DOI:10.1088/1361-6579/aac0a3] [PMID]
11. Bendak S, Rashid HS. Fatigue in aviation: A systematic review of the literature. International Journal of Industrial Ergonomics. 2020;76:102928. [DOI:10.1016/j.ergon.2020.102928]
12. Armstrong R, Brogden CM, Milner D, Norris D, Greig M. Effect of fatigue on functional movement screening performance in dancers. Medical problems of performing artists. 2018;33(3):213-219. [DOI:10.21091/mppa.2018.3032] [PMID]
13. Renata V, Li F, Lee C-H, Chen C-H, editors. Investigation on the correlation between eye movement and reaction time under mental fatigue influence. 2018 International Conference on Cyberworlds (CW); 2018: IEEE. [DOI:10.1109/CW.2018.00046] [PMID]
14. Cortes N, Onate J, Morrison S. Differential effects of fatigue on movement variability. Gait & posture. 2014;39(3):888-893. [DOI:10.1016/j.gaitpost.2013.11.020] [PMID] [PMCID]
15. Engebretsen L, Steffen K, Alonso JM, Aubry M, Dvorak J, Junge A, et al. Sports injuries and illnesses during the Winter Olympic Games 2010. British journal of sports medicine. 2010;44(11):772-780. [DOI:10.1136/bjsm.2010.076992] [PMID]
16. Clarsen B, Myklebust G, Bahr R. Development and validation of a new method for the registration of overuse injuries in sports injury epidemiology: the Oslo Sports Trauma Research Centre (OSTRC) overuse injury questionnaire. British journal of sports medicine. 2013;47(8):495-502. [DOI:10.1136/bjsports-2012-091524] [PMID]
17. Wilkins JC, McLeod TCV, Perrin DH, Gansneder BM. Performance on the balance error scoring system decreases after fatigue. Journal of athletic training. 2004;39(2):156.
18. Cook G, Burton L, Hoogenboom B. Pre-participation screening: the use of fundamental movements as an assessment of function-part 1. North American journal of sports physical therapy: NAJSPT. 2006;1(2):62.
19. Butler RJ, Plisky PJ, Southers C, Scoma C, Kiesel KB. Biomechanical analysis of the different classifications of the Functional Movement Screen deep squat test. Sports Biomechanics. 2010;9(4):270-279. [DOI:10.1080/14763141.2010.539623] [PMID]
20. Tabatabaei SM, Daneshmandi H, Norasteh AA, Sharif Nia H. Functional movement screening tests for the prediction of injuries in volleyball: A qualitative study. Annals of Applied Sport Science. 2018;6(4):9-15. [DOI:10.29252/aassjournal.6.4.9]
21. Halil T, Nurtekin E, Serdar B, Turgut K, Ahmet S, Dede B. Effects of fatigue on the balance performance as measured by balance error scorring system in volleyball players. Ovidius University Annals, Series Physical Education & Sport/Science, Movement & Health. 2009;9(2).
22. Lin H-T, Huang Y-C, Li Y-Y, Chang J-H. The effect of rectus abdominis fatigue on lower limb jumping performance and landing load for volleyball players. Applied Sciences. 2021;11(15):6697. [DOI:10.3390/app11156697]
23. Mazidi M, Letafatkar A, Hadadnejad M, Rajabi S. The effects of neck muscular fatigue on static and dynamic postural control in elite male volleyball players. Hormozgan Medical Journal. 2017;20(6):-. [DOI:10.18869/acadpub.hmj.20.6.407]
24. Armstrong R, Brogden CM, Milner D, Norris D, Greig M. The influence of fatigue on star excursion balance test performance in dancers. Journal of Dance Medicine & Science. 2018;22(3):142-147. [DOI:10.12678/1089-313X.22.3.142] [PMID]
25. Zhao D, Huang Y, Ao Y, Han C, Wang Q, Li Y, et al. Effect of pore geometry on the fatigue properties and cell affinity of porous titanium scaffolds fabricated by selective laser melting. Journal of the mechanical behavior of biomedical materials. 2018;88:478-487. [DOI:10.1016/j.jmbbm.2018.08.048] [PMID]
26. Greig M, Walker-Johnson C. The influence of soccer-specific fatigue on functional stability. Physical Therapy in Sport. 2007;8(4):185-190. [DOI:10.1016/j.ptsp.2007.03.001]
27. Clifton DR, Grooms DR, Onate JA. Overhead deep squat performance predicts Functional Movement Screen™ score. International journal of sports physical therapy. 2015;10(5):622. [DOI:10.1249/01.mss.0000478485.14922.fd]
28. Moran RW, Schneiders AG, Mason J, Sullivan SJ. Do Functional Movement Screen (FMS) composite scores predict subsequent injury? A systematic review with meta-analysis. British journal of sports medicine. 2017;51(23):1661-1669. [DOI:10.1136/bjsports-2016-096938] [PMID]
29. Frost DM, Beach TA, Callaghan JP, McGill SM. Using the Functional Movement Screen™ to evaluate the effectiveness of training. The Journal of Strength & Conditioning Research. 2012;26(6):1620-1630. [DOI:10.1519/JSC.0b013e318234ec59] [PMID]
30. Hadzic V, Sattler T, Topole E, Jarnovic Z, Burger H, Dervisevic E. Risk factors for ankle sprain in volleyball players: a preliminary analysis. Isokinetics and Exercise Science. 2009;17(3):155-160. [DOI:10.3233/IES-2009-0347]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Sport Biomechanics

Designed & Developed by : Yektaweb