Volume 9, Issue 4 (3-2024)                   J Sport Biomech 2024, 9(4): 284-300 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammad Pour Koli M, Fatahi A. Modern Approaches in Sport Biomechanics: A Review Paper. J Sport Biomech 2024; 9 (4) :284-300
URL: http://biomechanics.iauh.ac.ir/article-1-327-en.html
1- Department of Sports Biomechanics, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
Abstract:   (1200 Views)
Objective In recent years, advancements in information technology, such as wireless EMG, high-resolution cameras, programs like OpenSim, innovations in textile sensors, and the emergence of artificial intelligence and smart mobile devices, have provided biomechanists with new tools and approaches. This study aims to investigate emerging trends in sports biomechanics, summarizing and providing practical insights from research conducted between 2015 and 2023.
Methods A systematic search of research articles on new biomechanics approaches published between 2015 and 2023 was conducted. Specialized databases were queried, and 47 articles meeting the inclusion criteria were selected for analysis.
Results Analysis of the selected studies revealed that the integration of information technology, artificial intelligence, smartphones, software, and wearable medical sensors in sports biomechanics has shown promising results in enhancing performance and reducing injury risks.
Conclusion The findings of this study suggest that advancements in sports biomechanics technologies are pushing the boundaries of current research. Continued exploration and application of these technologies will likely shape the future of sports science and performance.
Full-Text [PDF 1965 kb]   (415 Downloads) |   |   Full-Text (HTML)  (1217 Views)  
Type of Study: Research | Subject: Special
Received: 2024/01/27 | Accepted: 2024/03/19 | Published: 2024/03/19

References
1. Mercado-Aguirre IM, Contreras-Ortiz SH, editors. Design and construction of a wearable wireless electrogoniometer for joint angle measurements in sports. VII Latin American Congress on Biomedical Engineering CLAIB 2016, Bucaramanga, Santander, Colombia, October 26th-28th, 2016; 2017: Springer. [DOI:10.1007/978-981-10-4086-3_98]
2. Carvalho H, Palacios D, Lima C, Melo M, Silveira L, Zângaro R, editors. Dispersive Raman analysis of sacha inchi ozonated oil. VII Latin American Congress on Biomedical Engineering CLAIB 2016, Bucaramanga, Santander, Colombia, October 26th-28th, 2016; 2017: Springer. [DOI:10.1007/978-981-10-4086-3_190]
3. Pearn J. Two early dynamometers: an historical account of the earliest measurements to study human muscular strength. Journal of the Neurological sciences. 1978;37(1-2):127-134. [DOI:10.1016/0022-510X(78)90233-2] [PMID]
4. Tai WH, Zhang R, Zhao L. Cutting-Edge Research in Sports Biomechanics: From Basic Science to Applied Technology. Bioengineering. 2023;1;10(6):668. [DOI:10.3390/bioengineering10060668] [PMID]
5. Schubert MM, Seay RF, Spain KK, Clarke HE, Taylor JK. Reliability and validity of various laboratory methods of body composition assessment in young adults. Clinical physiology and functional imaging. 2019;39(2):150-159. [DOI:10.1111/cpf.12550] [PMID]
6. Shenoy S. EMG in sports rehabilitation. British Journal of Sports Medicine. 2010;44(Suppl 1):i10-i10. [DOI:10.1136/bjsm.2010.078725.27]
7. Shirzad E. A new model for talent identification in karate based on artificial intelligence algorithms. Research in Sport Medicine and Technology. 2021;19(21):37-54.
8. Allen SV, Vandenbogaerde TJ, Pyne DB, Hopkins WG. Predicting a nation's Olympic-qualifying swimmers. International Journal of Sports Physiology and Performance. 2015;10(4):431-435. [DOI:10.1123/ijspp.2014-0314] [PMID]
9. Sheehan FT, Brainerd EL, Troy KL, Shefelbine SJ, Ronsky JL. Advancing quantitative techniques to improve understanding of the skeletal structure-function relationship. Journal of NeuroEngineering and Rehabilitation. 2018;15:1-7. [DOI:10.1186/s12984-018-0368-9] [PMID]
10. Arellano R, Pardillo S, Gavilán A, editors. Underwater undulatory swimming: Kinematic characteristics, vortex generation and application during the start, turn and swimming strokes. Proceedings of the XXth international symposium on biomechanics in sports; 2002: Universidad de Extremadura Caceras, Spain.
11. Shaw MP, Satchell LP, Thompson S, Harper ET, Balsalobre-Fernández C, Peart DJ. Smartphone and tablet software apps to collect data in sport and exercise settings: cross-sectional international survey. JMIR mHealth and uHealth. 2021;9(5):e21763. [DOI:10.2196/21763] [PMID]
12. Arellano Colomina R, Ruiz-Teba A, Morales Ortiz E, Gay Párraga A, Cuenca Fernández F, López Contreras G. Short course 50m female freestyle performance comparison between national and regional swimmers. 2018.
13. Nithya N, Nallavan G. Role of Wearables in Sports based on Activity recognition and biometric parameters: A Survey. In2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS) 2021;25:1700-1705. IEEE. [DOI:10.1109/ICAIS50930.2021.9395761]
14. Lin S, Gao C, Li H, Huang P, Ling Y, Chen Z, et al. Wearable sensor-based gait analysis to discriminate early Parkinson's disease from essential tremor. Journal of Neurology. 2023;270(4):2283-2301. [DOI:10.1007/s00415-023-11577-6] [PMID]
15. Cardona M, Cena CEG. Biomechanical analysis of the lower limb: A full-body musculoskeletal model for muscle-driven simulation. ieee Access. 2019;7:92709-92723. [DOI:10.1109/ACCESS.2019.2927515]
16. Barbosa TM, Barbosa AC, Simbana Escobar D, Mullen GJ, Cossor JM, Hodierne R, et al. The role of the biomechanics analyst in swimming training and competition analysis. Sports Biomechanics. 2023;22(12):1734-1751. [DOI:10.1080/14763141.2021.1960417] [PMID]
17. Song Y, Li L, Hughes G, Dai B. Trunk motion and anterior cruciate ligament injuries: a narrative review of injury videos and controlled jump-landing and cutting tasks. Sports biomechanics. 2023;22(1):46-64. [DOI:10.1080/14763141.2021.1877337] [PMID]
18. Dewig DR, Evans-Pickett A, Pietrosimone BG, Blackburn JT. Comparison of discrete and continuous analysis approaches for evaluating gait biomechanics in individuals with anterior cruciate ligament reconstruction. Gait & Posture. 2023;100:261-267. [DOI:10.1016/j.gaitpost.2023.01.012] [PMID]
19. Miller JD, Cabarkapa D, Miller AJ, Frazer LL, Templin TN, Eliason TD, et al. Novel 3D Force Sensors for a Cost-Effective 3D Force Plate for Biomechanical Analysis. Sensors. 2023;23(9):4437. [DOI:10.3390/s23094437] [PMID]
20. Millour G, Velásquez AT, Domingue F. A literature overview of modern biomechanical-based technologies for bike-fitting professionals and coaches. International Journal of Sports Science & Coaching. 2023;18(1):292-303. [DOI:10.1177/17479541221123960]
21. Liu Y, Zhu T. Individualized new teaching mode for sports biomechanics based on big data. International Journal of Emerging Technologies in Learning (Online). 2020;15(20):130. [DOI:10.3991/ijet.v15i20.17401]
22. Goyal A, Liu J, Wiens C, Stewart HE, McNitt-Gray J, Liu BJ, editors. Development of decision support tools for biomechanics research utilizing the integrated biomechanics informatics system (IBIS). Medical Imaging 2023: Imaging Informatics for Healthcare, Research, and Applications; 2023: SPIE. [DOI:10.1117/12.2655742] [PMID]
23. Dede DÖ, Çakmak G, Donmez MB, Küçükekenci AS, Lu W-E, Ni AA, et al. Effect of analysis software program on measured deviations in complete arch, implant-supported framework scans. The Journal of Prosthetic Dentistry. 2023. [DOI:10.1016/j.prosdent.2023.06.028] [PMID]
24. Lenton GK, Doyle TL, Lloyd DG, Higgs J, Billing D, Saxby DJ. Lower-limb joint work and power are modulated during load carriage based on load configuration and walking speed. Journal of biomechanics. 2019;83:174-180. [DOI:10.1016/j.jbiomech.2018.11.036] [PMID]
25. Wills JA, Saxby DJ, Lenton GK, Doyle TL. Ankle and knee moment and power adaptations are elicited through load carriage conditioning in males. Journal of Biomechanics. 2019;97:109341. [DOI:10.1016/j.jbiomech.2019.109341] [PMID]
26. Pizzolato C, Shim VB, Lloyd DG, Devaprakash D, Obst SJ, Newsham-West R, et al. Targeted achilles tendon training and rehabilitation using personalized and real-time multiscale models of the neuromusculoskeletal system. Frontiers in Bioengineering and Biotechnology. 2020:878. [DOI:10.3389/fbioe.2020.00878] [PMID]
27. Mohout I, Elahi SA, Esrafilian A, Killen BA, Korhonen RK, Verschueren S, et al. Signatures of disease progression in knee osteoarthritis: insights from an integrated multi-scale modeling approach, a proof of concept. Frontiers in Bioengineering and Biotechnology. 2023;11. [DOI:10.3389/fbioe.2023.1214693] [PMID]
28. Mokhtarzadeh H. Designing an Effective Prompt for Biomechanics Research using ChatGPT and Open-Source Models: A Human-in-the-Loop Approach.
29. Rajšp A, Fister Jr I. A systematic literature review of intelligent data analysis methods for smart sport training. Applied Sciences. 2020;10(9):3013. [DOI:10.3390/app10093013]
30. Mokhtarzadeh H. Revolutionizing Biomechanics: Integrating AI, Collaborative Coding Environments, and Simulation Software for Enhanced Model Development and Analysis. 2023. [DOI:10.31224/3036]
31. Hribernik M, Tomažič S, Umek A, Kos A. Unified platform for storing, retrieving, and analysing biomechanical applications data using graph database. Journal of Big Data. 2023;10(1):1-18. [DOI:10.1186/s40537-023-00747-y]
32. Telfer S, Li EY. pressuRe: an R package for analyzing and visualizing biomechanical pressure distribution data. Scientific Reports. 2023;13(1):16776. [DOI:10.1038/s41598-023-44041-6] [PMID]
33. Fleischmann C, Yanovich R, Milgrom C, Eliyahu U, Gez H, Heled Y, et al. Utility of preinduction tests as predictors of attrition in infantry recruits: a prospective study. BMJ Mil Health. 2023;169(3):225-230. [DOI:10.1136/bmjmilitary-2021-001776] [PMID]
34. Leong C-H. Using biomechanics to optimize mobility. ACSM's Health & Fitness Journal. 2023;27(5):33-38. [DOI:10.1249/FIT.0000000000000900]
35. Sarhaddi F, Kazemi K, Azimi I, Cao R, Niela-Vilén H, Axelin A, et al. A comprehensive accuracy assessment of Samsung smartwatch heart rate and heart rate variability. PloS one. 2022;17(12):e0268361. [DOI:10.1371/journal.pone.0268361] [PMID]
36. Ang CL, Kong PW. Field-Based Biomechanical Assessment of the Snatch in Olympic Weightlifting Using Wearable In-Shoe Sensors and Videos-A Preliminary Report. Sensors. 2023;23(3):1171. [DOI:10.3390/s23031171] [PMID]
37. Seçkin AÇ, Ateş B, Seçkin M. Review on Wearable Technology in sports: Concepts, Challenges and opportunities. Applied Sciences. 2023;13(18):10399. [DOI:10.3390/app131810399]
38. Ji S, Ghajari M, Mao H, Kraft RH, Hajiaghamemar M, Panzer MB, et al. Use of brain biomechanical models for monitoring impact exposure in contact sports. Annals of Biomedical Engineering. 2022;50(11):1389-1408. [DOI:10.1007/s10439-022-02999-w] [PMID]
39. Romero-Morales C, Matilde-Cruz A, García-Arrabe M, Higes-Núñez F, Lópes AD, Saiz SJ, et al. Assessing the effect of prophylactic ankle taping on ankle and knee biomechanics during landing tasks in healthy individuals: A cross-sectional observational study. Sao Paulo Medical Journal. 2023;142:e2022548. [DOI:10.1590/1516-3180.2022.0548.r1.10032023] [PMID]
40. Weart AN, Miller EM, Brindle RA, Ford KR, Goss DL. Wearable technology assessing running biomechanics and prospective running-related injuries in Active Duty Soldiers. Sports Biomechanics. 2023:1-17. [DOI:10.1080/14763141.2023.2208568] [PMID]
41. Bradshaw EJ, Hume PA. Biomechanical approaches to identify and quantify injury mechanisms and risk factors in women's artistic gymnastics. Sports Biomechanics. 2012;11(3):324-341. [DOI:10.1080/14763141.2011.650186] [PMID]
42. Lloyd D. The future of in-field sports biomechanics: Wearables plus modelling compute real-time in vivo tissue loading to prevent and repair musculoskeletal injuries. Sports Biomechanics. 2021:1-29. [DOI:10.1080/14763141.2021.1959947]
43. Di Paolo S, Bragonzoni L, Della Villa F, Grassi A, Zaffagnini S. Do healthy athletes exhibit at-risk biomechanics for anterior cruciate ligament injury during pivoting movements? Sports Biomechanics. 2022:1-14. [DOI:10.1080/14763141.2022.2080105] [PMID]
44. Ishii Y, Ishikawa M, Kurumadani H, Sunagawa T, Takahashi M, Iwamoto Y, et al. The Effect of Lateral Wedge Insole on Gait Variability Assessed Using Wearable Sensors in Patients with Medial Compartment Knee Osteoarthritis. Journal of Healthcare Engineering. 2023;2023. [DOI:10.1155/2023/6172812] [PMID]
45. Rum L, Sten O, Vendrame E, Belluscio V, Camomilla V, Vannozzi G, et al. Wearable sensors in sports for persons with disability: A systematic review. Sensors. 2021;21(5):1858. [DOI:10.3390/s21051858] [PMID]
46. Reyes Leiva KM, Gato MÁC, Olmedo JJS. Estimation of Spatio-Temporal Parameters of Gait and Posture of Visually Impaired People Using Wearable Sensors. Sensors. 2023;23(12):5564. [DOI:10.3390/s23125564] [PMID]
47. Willwacher S, Weir G. The future of footwear biomechanics research. Footwear Science. 2023:1-10. [DOI:10.1080/19424280.2023.2199011]
48. Taborri J, Keogh J, Kos A, Santuz A, Umek A, Urbanczyk C, et al. Sport biomechanics applications using inertial, force, and EMG sensors: A literature overview. Applied bionics and biomechanics. 2020;2020. [DOI:10.1155/2020/2041549] [PMID]
49. Romagnoli S, Ripanti F, Morettini M, Burattini L, Sbrollini A. Wearable and Portable Devices for Acquisition of Cardiac Signals While Practicing Sport: A Scoping Review. Sensors. 2023;23(6):3350. [DOI:10.3390/s23063350] [PMID]
50. Law N-Y, Li JX, Zhu Q, Nantel J. Effects of a biomechanical-based Tai Chi program on gait and posture in people with Parkinson's disease: study protocol for a randomized controlled trial. Trials. 2023;24(1):241. [DOI:10.1186/s13063-023-07146-x] [PMID]
51. Jain D, Huber CM, Patton DA, McDonald CC, Wang L, Ayaz H, et al. Use of functional near-infrared spectroscopy to quantify neurophysiological deficits after repetitive head impacts in adolescent athletes. Sports Biomechanics. 2023:1-15. [DOI:10.1080/14763141.2023.2229790] [PMID]
52. Tierney G. Concussion biomechanics, head acceleration exposure and brain injury criteria in sport: a review. Sports biomechanics. 2022:1-29. [DOI:10.1080/14763141.2021.2016929] [PMID]
53. Sawacha Z, Gabriella G, Cristoferi G, Guiotto A, Avogaro A, Cobelli C. Diabetic gait and posture abnormalities: a biomechanical investigation through three dimensional gait analysis. Clinical biomechanics. 2009;24(9):722-728. [DOI:10.1016/j.clinbiomech.2009.07.007] [PMID]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Sport Biomechanics

Designed & Developed by : Yektaweb